Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 385
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Toxicology ; 462: 152936, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34509578

RESUMO

Non-human primates (NHPs) have played a vital role in fundamental, pre-clinical, and translational studies because of their high physiological and genetic similarity to humans. Here, we report a method to isolate primary hepatocytes from the livers of rhesus macaques (Macaca mulatta) after in situ whole liver perfusion. Isolated primary macaque hepatocytes (PMHs) were treated with various compounds known to have different pathways of genotoxicity/carcinogenicity and the resulting DNA damage was evaluated using the high-throughput CometChip assay. The comet data were quantified using benchmark dose (BMD) modeling and the BMD50 values for treatments of PMHs were compared with those generated from primary human hepatocytes (PHHs) in our previous study (Seo et al. Arch Toxicol 2020, 2207-2224). The results showed that despite varying CYP450 enzyme activities, PMHs had the same sensitivity and specificity as PHHs in detecting four indirect-acting (i.e., requiring metabolic activation) and seven direct-acting genotoxicants/carcinogens, as well as five non-carcinogens that are negative or equivocal for genotoxicity in vivo. The BMD50 estimates and their confidence intervals revealed species differences for DNA damage potency, especially for direct-acting compounds. The present study provides a practical method for maximizing the use of animal tissues by isolating primary hepatocytes from NHPs. Our data support the use of PMHs as a reliable surrogate of PHHs for evaluating the genotoxic hazards of chemical substances for humans.


Assuntos
Carcinógenos/toxicidade , Dano ao DNA/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Mutagênicos/toxicidade , Animais , Benchmarking , Carcinógenos/administração & dosagem , Sistema Enzimático do Citocromo P-450/metabolismo , Relação Dose-Resposta a Droga , Hepatócitos/enzimologia , Hepatócitos/patologia , Ensaios de Triagem em Larga Escala , Humanos , Macaca mulatta , Masculino , Mutagênicos/administração & dosagem , Reprodutibilidade dos Testes , Especificidade da Espécie
2.
Biomed Pharmacother ; 142: 112081, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34463271

RESUMO

Previous reports demonstrated that aristolochic acids (AAs) exposure-induced nephrotoxicity, mutations, and tumorigenesis are mainly due to aristolochic acid I (AAI). Notably, the chemical structure of aristolochic acid IVa (AAIVa), which exists at higher levels in many Aristolochiaceae herbs, is extremely similar to AAI. In lack of toxicological data, it is unknown whether AAIVa exposure leads to aristolochic acid nephropathy (AAN), mutations, and tumorigenesis as of AAI. To answer these questions, mice were administered AAIVa by single or repeated long-term gavage, while AAI was used as a positive control. We found that single gavage of 40 mg/kg of AAIVa exhibited no obvious toxicity. Also, there were no tumors or death in mice administrated with 1 and 10 mg/kg of AAIVa for 6 months followed by a 12-month recovery time. There were no noteworthy alterations in gene mutation frequency in the kidney, liver, and stomach between the AAIVa and control mice. Fascinatingly, AA-associated mutational signatures, adenine-to-thymine (A>T) transversions, were absent in AAIVa-treated mice. Nonetheless, 10 mg/kg of AAIVa triggered lymphocytic infiltration and slight fibrous hyperplasia in the kidney at the 6th month; however, these were alleviated at the 12th and 18th months. On the contrary, AAI (positive control) caused severe diffuse fibrosis, tubular atrophy, necrosis, tumors in the forestomach and kidney, and death after the 6th month. It seems that long-term AAIVa exposure induced mild renal lesions could be due to the activation of the canonical or noncanonical transforming growth factor-ß (TGFß) pathway. Overall, these findings suggest that the mutagenicity and carcinogenic risk of AAIVa are very low.


Assuntos
Ácidos Aristolóquicos/toxicidade , Nefropatias/induzido quimicamente , Animais , Ácidos Aristolóquicos/administração & dosagem , Ácidos Aristolóquicos/química , Carcinógenos/administração & dosagem , Carcinógenos/química , Carcinógenos/toxicidade , Relação Dose-Resposta a Droga , Feminino , Nefropatias/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutagênicos/administração & dosagem , Mutagênicos/química , Mutagênicos/toxicidade , Fatores de Tempo
3.
Arch Toxicol ; 95(3): 1055-1069, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33420596

RESUMO

Benzo[a]pyrene (BaP) is bioactivated in most organisms by the cytochrome P450 (CYP) enzymes, mainly CYP1A1, ultimately resulting in the reactive metabolite BaP-7,8-dihydrodiol-9,10-epoxide (BPDE) capable of covalently binding to DNA and forming adducts. This step has been defined as the key process in cancer initiation in humans. However, limited knowledge is available about the consequences of BaP exposure in organisms lacking this classical CYP1A1 pathway, one example is the model nematode Caenorhabditis elegans. The aim of this study was to define the genotoxic potential of BaP in C. elegans and to advance our understanding of xenobiotic processing in the absence of the CYP1A1 pathway. Exposure to high concentrations of BaP (0-40 µM) significantly affected life cycle endpoints of C. elegans, which were manifested by a reduced reproductive output and shortened life span. An optimised comet assay revealed that DNA damage increased in a dose-dependent manner; however, no bulky DNA adducts (dG-N2-BPDE) were observed by 32P-postlabelling. Global transcriptomic analysis by RNA-Seq identified responsive transcript families, most prominently members of the cyp-35 and UDP-glucuronosyltransferases (UGTs) enzyme families, both of which are linked to xenobiotic metabolism. Strains harbouring mutations in the cyp-35A2 and cyp-35A3 genes were notably less prone to BaP-mediated toxicity, and BaP led to longevity in cyp-35A5 mutants. In summary, BaP induces transcriptional, genotoxic and phenotypic responses in C. elegans, despite the absence of the classical CYP1A1 bioactivation pathway. This provides first evidence that parallel pathways are implicated in BaP metabolism in C. elegans and this seems to be mediated via the cyp-35 pathway.


Assuntos
Benzo(a)pireno/toxicidade , Caenorhabditis elegans/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Mutagênicos/toxicidade , Animais , Benzo(a)pireno/administração & dosagem , Benzo(a)pireno/metabolismo , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Ensaio Cometa , Citocromo P-450 CYP1A1/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Testes de Mutagenicidade , Mutagênicos/administração & dosagem
4.
Arch Toxicol ; 95(3): 1071-1079, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33245377

RESUMO

The fungicide Iprodione is widely applied in vegetables and raises concern for human health. The A549 human lung carcinoma cell line is a suitable model for assessing the toxicological effects of drugs. The goal of this work was to evaluate the genotoxicity and oxidative stress in the A549 cell line exposed to sublethal concentrations from 3 to 100 µg/mL Iprodione considering LC50 = 243.4 µg/mL Iprodione, as determined by the MTT assay. Generalized Linear Mixed Models (GLMM) were performed to determine the association between the responses NDI, MNim and MNib and the explanatory variables. Iprodione and solvent were relativized to the control whereas the concentration was included as numeric variable. ANOVA was used for the comparison of treatments. The coefficients of linear association between the explanatory variables and NDI, and the coefficients of logistic association between explanatory variables and MNim were not significant. However, these coefficients showed significant association with MNib only for Iprodione treatment but not for Iprodione concentration, indicating lack of dose-response relationship. Genotoxicity risk assessment indicated that the increase in Iprodione concentrations increased slightly the probability of belonging to the genotoxic category. ANOVA showed significant differences in MNib, and non-significant differences in NDI and MNim among treatments. The oxidative stress analysis performed at 3, 12, and 25 µg/mL Iprodione showed a significant and linear increase in SOD, and a significant and linear decrease in GSH and GST. The Dunnett test was significant for GSH at 12 and SOD at 25 µg/mL.


Assuntos
Aminoimidazol Carboxamida/análogos & derivados , Fungicidas Industriais/toxicidade , Hidantoínas/toxicidade , Mutagênicos/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Células A549 , Aminoimidazol Carboxamida/administração & dosagem , Aminoimidazol Carboxamida/toxicidade , Relação Dose-Resposta a Droga , Fungicidas Industriais/administração & dosagem , Humanos , Hidantoínas/administração & dosagem , Dose Letal Mediana , Neoplasias Pulmonares/metabolismo , Testes de Mutagenicidade , Mutagênicos/administração & dosagem , Medição de Risco , Superóxido Dismutase/metabolismo
5.
Mutagenesis ; 35(6): 479-489, 2020 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-33259605

RESUMO

In this study, we have studied the cytotoxicity and genotoxic potency of 3 pro-oxidants; H2O2, menadione and KBrO3 in different dosing scenarios, namely acute (1-day dosing) and chronic (5-days). For this purpose, relative population doubling (RPD%) and mononucleated micronucleus (MN) test were used. TK6 cells and NH32 were employed in in vitro experiments. In the study, the total acute dose was divided into 5 days for each prooxidant chemicals by dose fractionation (1/5th per day) method. Acute dosing was compared to chronic dosing. The oxidative stress caused by the exposure of cells with pro-oxidant chemicals to the cells was determined by an optimized 2',7'-dichlorofluorescein diacetate (DCFHDA) test method. The antioxidant levels of the cell lines were altered with buthionine sulfoxide (BSO) and N-acetyl cysteine (NAC), and the effect of antioxidant capacity on the MN formation in the cells was observed with this method. In the case of H2O2 and menadione, fractional dosing has been observed to result in lower toxicity and lower genotoxicity. But in the case of KBrO3, unlike the other 2 pro-oxidants, higher MN induction was observed with fractionated doses. DCFHDA test clearly demonstrated ROS induction with H2O2 and menadione but not with KBrO3. Unexpectedly, DCFHDA test demonstrated that KBrO3 did not cause an increase ROS levels in both acute and chronic dosing, suggesting an alternative ROS induction mechanism. It was also observed that, treatment with BSO and NAC, caused increasing and decreasing of MN fold change respectively, allowing further ROS specific mechanisms to be explored. Hence, dose fractionation expectedly caused less MN, cytotoxicity and ROS formation with H2O2 and menadione exposure, but not with KBrO3. This implies a unique mechanism of action for KBrO3 induced genotoxicity. Chronic dosing in vitro may be a valuable approach allowing better understanding of how chemicals damage DNA and pose human hazards.


Assuntos
Dano ao DNA/efeitos dos fármacos , Testes de Mutagenicidade/métodos , Mutagênicos/administração & dosagem , Oxidantes/administração & dosagem , Proteína Supressora de Tumor p53/genética , Linhagem Celular , Células Cultivadas , Resistência a Medicamentos/genética , Glutationa/metabolismo , Humanos , Peróxido de Hidrogênio/administração & dosagem , Peróxido de Hidrogênio/toxicidade , Testes para Micronúcleos/métodos , Mutagênicos/toxicidade , Oxidantes/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Proteína Supressora de Tumor p53/deficiência , Vitamina K 3/metabolismo
6.
Environ Mol Mutagen ; 61(9): 852-871, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32926486

RESUMO

The purpose of the present investigation is to analyze the in vivo genotoxicity dose-response data of ethylene oxide (EO) and the applicability of the derived point-of-departure (PoD) values when estimating permitted daily exposure (PDE) values. A total of 40 data sets were identified from the literature, and benchmark dose analyses were conducted using PROAST software to identify a PoD value. Studies employing the inhalation route of exposure and assessing gene or chromosomal mutations and chromosomal damage in various tissues were considered the most relevant for assessing risk from EO, since these effects are likely to contribute to adverse health consequences in exposed individuals. The PoD estimates were screened for precision and the values were divided by data-derived adjustment factors. For gene mutations, the lowest PDE was 285 parts per trillion (ppt) based on the induction of lacI mutations in the testes of mice following 48 weeks of exposure to EO. The corresponding lowest PDE value for chromosomal mutations was 1,175 ppt for heritable translocations in mice following 8.5 weeks of EO exposure. The lowest PDE for chromosomal aberrations was 238 ppt in the mouse peripheral blood lymphocytes following 48 weeks of inhalation exposure. The diverse dose-response data for EO-induced genotoxicity enabled the derivation of PoDs for various endpoints, tissues, and species and identified 238 ppt as the lowest PDE in this retrospective analysis.


Assuntos
Óxido de Etileno/toxicidade , Mutagênicos/toxicidade , Animais , Aberrações Cromossômicas/efeitos dos fármacos , Relação Dose-Resposta a Droga , Óxido de Etileno/administração & dosagem , Camundongos , Testes de Mutagenicidade , Mutagênicos/administração & dosagem , Mutação/efeitos dos fármacos , Ratos , Medição de Risco , Translocação Genética/efeitos dos fármacos
7.
Toxicol Ind Health ; 36(2): 110-118, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32279653

RESUMO

Anilofos is an organophosphate compound and is used extensively as a preemergence and early postemergence herbicide for the management of sedges, annual grasses, and some broad-leaved weeds in rice fields. The present study was aimed to assess the mutagenic potential of anilofos after sub-chronic exposure in Swiss albino mice. For this, a combined approach employing micronucleus (MN), chromosomal aberration (CA) studies and sperm-head abnormalities (SHAs) was used. Three dose levels of 1%, 2%, and 4% of maximum tolerated dose (MTD) (235 mg/kg b.wt.), that is, 2.35, 4.7 and 9.4 mg/kg b.wt., respectively, were administered orally daily for 90 days. A higher incidence of micronucleated erythrocytes (polychromatic erythrocytes + normochromatic erythrocytes), significant increase in CA frequency, and significant decrease in the ratio of polychromatic/normochromatic erythrocytes (P/N) ratio were observed at the 4.7 and 9.4 mg/kg b.wt. dose levels. A significant increase in SHA was observed in all treatment groups (2.35, 4.7, and 9.4 mg/kg b.wt.) from the control group. In conclusion, anilofos exposure of 2% and 4% of MTD caused a higher rate of micronucleated erythrocytes, increased frequency of CA, increase in SHA, and lower P/N ratio, and pesticide exposure of 1% of MTD only resulted in higher SHAs. Thus, anilofos was found to have mutagenic potential in mice when administered daily orally at dose rate of 4.7 and 9.4 mg/kg b.wt. for 90 days.


Assuntos
Células da Medula Óssea/efeitos dos fármacos , Herbicidas/toxicidade , Compostos Organofosforados/toxicidade , Espermatozoides/efeitos dos fármacos , Animais , Medula Óssea/efeitos dos fármacos , Aberrações Cromossômicas , Células Germinativas/efeitos dos fármacos , Herbicidas/administração & dosagem , Masculino , Camundongos , Mutagênicos/administração & dosagem , Compostos Organofosforados/administração & dosagem
8.
J Ethnopharmacol ; 253: 112567, 2020 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-32027999

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Himatanthus drasticus is a tree popularly known as janaguba. Endemic to Brazil, it is found in the Cerrado and Caatinga biomes, rock fields, and rainforests. Janaguba latex has been used in folk medicine for its antineoplastic, anti-inflammatory, analgesic, and antiallergic activities. However, studies investigating the safety of its use for medicinal purposes are limited. AIM OF THE STUDY: This study aimed to evaluate the toxicity of the latex extracted from H. drasticus. MATERIALS AND METHODS: The latex was extracted from H. drasticus specimens by removing a small area of bark (5 × 30 cm) and then dissolving the exudate in water and lyophilizing it. Phytochemical screening was performed by TLC and GC-MS, protein, and carbohydrate levels. Cell viability was performed by the MTT method. Acute oral toxicity, genotoxicity, and mutagenicity assays were performed in mice. RESULTS: TLC showed the presence of saponins and reducing sugars, as well as steroids and terpenes. The GC-MS analysis of the nonpolar fraction identified lupeol acetate, betulin, and α/ß-amyrin derivatives as the major compounds. The latex was toxic to S-180 cells at 50 and 100 µg/mL. No signals of toxicity or mutagenicity was found in mice treated with 2000 mg/kg of the latex, but genotoxicity was observed in the Comet assay. CONCLUSIONS: H. drasticus latex showed toxicity signals at high doses (2000 mg/kg). Although the latex was not mutagenic to mice, it was genotoxic in the Comet assay in our experimental conditions. Even testing a limit dose of 2000 mg/kg, which is between 10 to 35-fold the amount used in folk medicine, caution must be taken since there is no safe level for genotoxic compounds exposure. Further studies on the toxicological aspects of H. drasticus latex are necessary to elucidate its possible mechanisms of genotoxicity.


Assuntos
Apocynaceae/química , Látex/toxicidade , Mutagênicos/toxicidade , Animais , Linhagem Celular Tumoral , Ensaio Cometa , Relação Dose-Resposta a Droga , Humanos , Látex/administração & dosagem , Látex/isolamento & purificação , Masculino , Camundongos , Mutagênicos/administração & dosagem , Mutagênicos/isolamento & purificação , Testes de Toxicidade
9.
Anticancer Agents Med Chem ; 20(2): 264-273, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31736447

RESUMO

BACKGROUND: Colorectal cancer is the third most commonly diagnosed cancer in the world, causing many deaths every year. Combined chemotherapy has opened a new horizon in treating colorectal cancer. The objective of the present study is to investigate the activity of oxaliplatin in combination with emetine and patulin against colorectal cancer models. METHODS: IC50 values of oxaliplatin, emetine and patulin were determined against human colorectal cancer cell lines (HT-29 and Caco-2) using MTT reduction assay. Synergistic, antagonistic and additive effects from the selected binary combinations were determined as a factor of sequence of administration and added concentrations. Proteomics was carried out to identify the proteins which were accountable for combined drug action applying to the selected drug combination. RESULTS: Oxaliplatin in combination with patulin produced synergism against human colorectal cancer models depending on dose and sequence of drug administration. Bolus administration of oxaliplatin with patulin proved to be the best in terms of synergistic outcome. Altered expressions of nine proteins (ACTG, PROF1, PPIA, PDIA3, COF1, GSTP1, ALDOA, TBA1C and TBB5) were considered for combined drug actions of oxaliplatin with patulin. CONCLUSION: Bolus administration of oxaliplatin with patulin has the potential to be used in the treatment of colorectal cancer, and would warrant further evaluation using suitable animal model.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Emetina/farmacologia , Oxaliplatina/farmacologia , Patulina/farmacologia , Inibidores da Síntese de Proteínas/farmacologia , Antineoplásicos/administração & dosagem , Células CACO-2 , Sinergismo Farmacológico , Quimioterapia Combinada , Emetina/administração & dosagem , Células HT29 , Humanos , Mutagênicos/administração & dosagem , Mutagênicos/farmacologia , Oxaliplatina/administração & dosagem , Patulina/administração & dosagem , Inibidores da Síntese de Proteínas/administração & dosagem
10.
Arch Toxicol ; 93(10): 3021-3031, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31559443

RESUMO

Alternaria molds can produce a variety of different mycotoxins, often resulting in food contamination with chemical mixtures, posing a challenge for risk assessment. Some of these metabolites possess estrogenic properties, an effect whose toxicological relevance is questioned in the light of the strong genotoxic and cytotoxic properties of co-occurring toxins. Thus, we tested a complex extract from A. alternata for estrogenic properties in Ishikawa cells. By assessing alkaline phosphatase activity, we did not observe estrogen receptor (ER) activation at non-cytotoxic concentrations (≤ 10 µg/ml). Furthermore, an extract stripped of highly genotoxic perylene quinones also did not mediate estrogenic effects, despite diminished genotoxic properties in the comet assay (≥ 10 µg/ml). Interestingly, both extracts impaired the estrogenicity of 17ß-estradiol (E2) at non-cytotoxic concentrations (5-10 µg/ml), indicating anti-estrogenic effects which could not be explained by the presence of known mycoestrogens. A mechanism for this unexpected result might be the activation of the aryl hydrocarbon receptor (AhR) by Alternaria metabolites, as indicated by the induction of CYP1A1 transcription. While a direct influence on the metabolism of E2 could not be confirmed by LC-MS/MS, literature describing a direct interplay of the AhR with estrogenic pathways points to a corresponding mode of action. Taken together, the present study indicates AhR-mediated anti-estrogenic effects as a novel mechanism of naturally co-occurring Alternaria toxin mixtures. Furthermore, our results confirm their genotoxic activity and raise questions about the contribution of still undiscovered metabolites to toxicological properties.


Assuntos
Alternaria/metabolismo , Antagonistas de Estrogênios/toxicidade , Micotoxinas/toxicidade , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Linhagem Celular Tumoral , Estradiol/metabolismo , Antagonistas de Estrogênios/administração & dosagem , Antagonistas de Estrogênios/isolamento & purificação , Humanos , Mutagênicos/administração & dosagem , Mutagênicos/isolamento & purificação , Mutagênicos/toxicidade , Micotoxinas/administração & dosagem , Micotoxinas/isolamento & purificação , Receptores de Hidrocarboneto Arílico/metabolismo
11.
Food Chem Toxicol ; 128: 1-7, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30910685

RESUMO

Methamphetamine (METH) is a widely consumed psychostimulant drug; its acute toxic effects in brain and liver are well known, furthermore, there is some evidence in regard to its DNA damaging properties in humans. Therefore, we studied the impact of the drug on genomic stability in human derived hepatoma (HepG2) cells, which reflect the activation/detoxification of drugs better than other cell lines. Furthermore, experiments with human buccal derived cells (TR146) were conducted as the drug is consumed orally. Induction of DNA damage in both cell types with doses reflecting the exposure in abusers was found in single cell gel electrophoresis (SCGE) assays (which detect single and double strand breaks as well as apurinic sites). Furthermore, induction of micronuclei (formed as a consequence of structural and numerical chromosomal aberrations) and formation of nuclear buds resulting from gene amplifications was detected. Additional experiments with lesion-specific enzymes showed that the drug causes oxidation of purines and pyrimidines, indicating that its genotoxic effects may be due to oxidation of the DNA. Our findings support the assumption that the drug may cause adverse health effects (such as cancer and infertility) in long-term users which are causally related to DNA damage.


Assuntos
Transtornos Relacionados ao Uso de Anfetaminas/sangue , Aberrações Cromossômicas , Ensaio Cometa/métodos , Dano ao DNA , DNA/efeitos dos fármacos , Metanfetamina/toxicidade , Mutagênicos/toxicidade , Linhagem Celular , Citocinese/efeitos dos fármacos , DNA/metabolismo , DNA-Formamidopirimidina Glicosilase/metabolismo , Relação Dose-Resposta a Droga , Endodesoxirribonucleases/metabolismo , Células Hep G2 , Humanos , Metanfetamina/administração & dosagem , Testes para Micronúcleos , Mutagênicos/administração & dosagem , Oxirredução , Testes de Toxicidade Aguda
12.
Nature ; 566(7743): 249-253, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30700914

RESUMO

Environmental genotoxic factors pose a challenge to the genomic integrity of epithelial cells at barrier surfaces that separate host organisms from the environment. They can induce mutations that, if they occur in epithelial stem cells, contribute to malignant transformation and cancer development1-3. Genome integrity in epithelial stem cells is maintained by an evolutionarily conserved cellular response pathway, the DNA damage response (DDR). The DDR culminates in either transient cell-cycle arrest and DNA repair or elimination of damaged cells by apoptosis4,5. Here we show that the cytokine interleukin-22 (IL-22), produced by group 3 innate lymphoid cells (ILC3) and γδ T cells, is an important regulator of the DDR machinery in intestinal epithelial stem cells. Using a new mouse model that enables sporadic inactivation of the IL-22 receptor in colon epithelial stem cells, we demonstrate that IL-22 is required for effective initiation of the DDR following DNA damage. Stem cells deprived of IL-22 signals and exposed to carcinogens escaped DDR-controlled apoptosis, contained more mutations and were more likely to give rise to colon cancer. We identified metabolites of glucosinolates, a group of phytochemicals contained in cruciferous vegetables, to be a widespread source of genotoxic stress in intestinal epithelial cells. These metabolites are ligands of the aryl hydrocarbon receptor (AhR)6, and AhR-mediated signalling in ILC3 and γδ T cells controlled their production of IL-22. Mice fed with diets depleted of glucosinolates produced only very low levels of IL-22 and, consequently, the DDR in epithelial cells of mice on a glucosinolate-free diet was impaired. This work identifies a homeostatic network protecting stem cells against challenge to their genome integrity by AhR-mediated 'sensing' of genotoxic compounds from the diet. AhR signalling, in turn, ensures on-demand production of IL-22 by innate lymphocytes directly regulating components of the DDR in epithelial stem cells.


Assuntos
Transformação Celular Neoplásica/efeitos dos fármacos , Colo/citologia , Interleucinas/farmacologia , Mutagênicos/farmacologia , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Animais , Apoptose/efeitos dos fármacos , Transformação Celular Neoplásica/genética , Neoplasias do Colo/genética , Neoplasias do Colo/prevenção & controle , Dano ao DNA , Dieta/efeitos adversos , Glucosinolatos/administração & dosagem , Glucosinolatos/farmacologia , Imunidade Inata , Interleucinas/biossíntese , Mucosa Intestinal/citologia , Ligantes , Camundongos , Mutagênicos/administração & dosagem , Mutação/genética , Receptores de Hidrocarboneto Arílico/metabolismo , Receptores de Interleucina/metabolismo , Células-Tronco/citologia , Linfócitos T/metabolismo , Interleucina 22
13.
Biomed Pharmacother ; 112: 108691, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30798131

RESUMO

Galangin possess wide range of pharmacological activities including antiarthritic, hepatoprotective, anti-inflammatory, antibacterial, and anticancer especially in hepatocellular carcinoma. However, its biological use has been limited owing to its poor aqueous solubility, P-gp efflux and rapid in vivo metabolism by cytochrome enzymes. In order to address the drawbacks of galangin, the current work was designed with an objective to prepare liver targeted galangin loaded galactosylated pluronic F68 polymeric (GF68-Gal) micelles. Galactosylated pluronic F68 copolymer was successfully synthesized usi reduction amination method and used for micelle preparation. The prepared micelles were evaluated for micelle size, entrapment efficiency, zeta potential, in vitro galangin release and in vivo biodistribution. The average size of GF68-Gal micelles was found to be around 242±4.6 nm with an entrapment efficiency of about 77.5± 0.34% w/w. In vitro dissolution profile of GF68-Gal micelles revealed controlled release of galangin. Further, biodistribution studies of GF68-Gal micelles showed significant improvement in the amount of galangin in liver at 15 min (around 2.6 folds) and after 30 min (around 7.18 folds) as compared to galangin solution. Such significant increase in galangin amount in the liver for GF68-Gal micelles could be attributed to their efficient targeting to the liver by galactose moieties having affinity towards ASGPR receptor, P-gp and cytochrome enzyme inhibition activity of pluronic F68 reducing the rate of metabolism and in turn elimination. Thus, galactosylated pluronic F68 copolymer can act as a promising carrier system for improving liver targeting of hydrophobic drugs susceptible to P-gp efflux and cytochrome enzyme associated metabolism.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Flavonoides/metabolismo , Galactose/metabolismo , Fígado/metabolismo , Micelas , Poloxâmero/metabolismo , Animais , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/química , Portadores de Fármacos/metabolismo , Flavonoides/administração & dosagem , Flavonoides/química , Galactose/administração & dosagem , Galactose/química , Fígado/efeitos dos fármacos , Masculino , Mutagênicos/administração & dosagem , Mutagênicos/química , Mutagênicos/metabolismo , Poloxâmero/administração & dosagem , Poloxâmero/química , Ratos , Ratos Wistar , Tensoativos/administração & dosagem , Tensoativos/química , Tensoativos/metabolismo , Distribuição Tecidual/efeitos dos fármacos , Distribuição Tecidual/fisiologia
14.
Chem Res Toxicol ; 32(5): 869-877, 2019 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-30807115

RESUMO

Acrylamide has been classified as a "Group 2A carcinogen" (probably carcinogenic to humans) by the International Agency for Research on Cancer. The carcinogenicity of acrylamide is attributed to its well-recognized genotoxicity. In the present study, we investigated the effect of acrylamide on epigenetic alterations in mice. Female B6C3F1 mice received acrylamide in drinking water for 28 days, at doses previously used in a 2 year cancer bioassay (0, 0.0875, 0.175, 0.35, and 0.70 mM), and the genotoxic and epigenetic effects were investigated in lungs, a target organ for acrylamide carcinogenicity, and livers, a nontarget organ. Acrylamide exposure resulted in a dose-dependent formation of N7-(2-carbamoyl-2-hydroxyethyl)guanine and N3-(2-carbamoyl-2-hydroxyethyl)adenine in liver and lung DNA. In contrast, the profiles of global epigenetic alterations differed between the two tissues. In the lungs, acrylamide exposure resulted in a decrease of histone H4 lysine 20 trimethylation (H4K20me3), a common epigenetic feature of human cancer, while in the livers, there was increased acetylation of histone H3 lysine 27 (H3K27ac), a gene transcription activating mark. Treatment with 0.70 mM acrylamide also resulted in substantial alterations in the DNA methylation and whole transcriptome in the lungs and livers; however, there were substantial differences in the trends of DNA methylation and gene expression changes between the two tissues. Analysis of differentially expressed genes showed a marked up-regulation of genes and activation of the gene transcription regulation pathway in livers, but not lungs. This corresponded to increased histone H3K27ac and DNA hypomethylation in livers, in contrast to hypermethylation and transcription silencing in lungs. Our results demonstrate that acrylamide induced global epigenetic alterations independent of its genotoxic effects, suggesting that epigenetic events may determine the organ-specific carcinogenicity of acrylamide. Additionally this study provides strong support for the importance of epigenetic alterations, in addition to genotoxic events, in the mechanism of carcinogenesis induced by genotoxic chemical carcinogens.


Assuntos
Acrilamida/toxicidade , Adutos de DNA/metabolismo , Fígado/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Mutagênicos/toxicidade , Poluentes Químicos da Água/toxicidade , Acrilamida/administração & dosagem , Adenina/análogos & derivados , Adenina/química , Administração Oral , Animais , Carcinógenos/administração & dosagem , Carcinógenos/toxicidade , Adutos de DNA/química , Adutos de DNA/genética , Epigênese Genética/efeitos dos fármacos , Feminino , Guanina/análogos & derivados , Guanina/química , Histonas/química , Histonas/genética , Histonas/metabolismo , Metilação/efeitos dos fármacos , Camundongos , Mutagênicos/administração & dosagem , Poluentes Químicos da Água/administração & dosagem
15.
Arch Toxicol ; 93(5): 1433-1448, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30788552

RESUMO

In vitro genotoxicity testing that employs metabolically active human cells may be better suited for evaluating human in vivo genotoxicity than current bacterial or non-metabolically active mammalian cell systems. In the current study, 28 compounds, known to have different genotoxicity and carcinogenicity modes of action (MoAs), were evaluated over a wide range of concentrations for the ability to induce DNA damage in human HepG2 and HepaRG cells. DNA damage dose-responses in both cell lines were quantified using a combination of high-throughput high-content (HTHC) CometChip technology and benchmark dose (BMD) quantitative approaches. Assays of metabolic activity indicated that differentiated HepaRG cells had much higher levels of cytochromes P450 activity than did HepG2 cells. DNA damage was observed for four and two out of five indirect-acting genotoxic carcinogens in HepaRG and HepG2 cells, respectively. Four out of seven direct-acting carcinogens were positive in both cell lines, with two of the three negatives being genotoxic mainly through aneugenicity. The four chemicals positive in both cell lines generated HTHC Comet data in HepaRG and HepG2 cells with comparable BMD values. All the non-genotoxic compounds, including six non-genotoxic carcinogens, were negative in HepaRG cells; five genotoxic non-carcinogens also were negative. Our results indicate that the HTHC CometChip assay detects a greater proportion of genotoxic carcinogens requiring metabolic activation (i.e., indirect carcinogens) when conducted with HepaRG cells than with HepG2 cells. In addition, BMD genotoxicity potency estimate is useful for quantitatively evaluating CometChip assay data in a scientifically rigorous manner.


Assuntos
Carcinógenos/toxicidade , Ensaio Cometa/métodos , Dano ao DNA/efeitos dos fármacos , Mutagênicos/toxicidade , Carcinógenos/administração & dosagem , Linhagem Celular , Sistema Enzimático do Citocromo P-450/metabolismo , Relação Dose-Resposta a Droga , Células Hep G2 , Ensaios de Triagem em Larga Escala/métodos , Humanos , Mutagênicos/administração & dosagem
16.
Environ Sci Pollut Res Int ; 26(6): 6234-6243, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30637546

RESUMO

Antineoplastic drugs (AD) have been increasingly used, but the disposal of their wastes in the environment via hospital effluent and domestic sewage has emerged as an environmental issue. The current risks posed to these animals and effects of pollutants on the reptiles' population level remain unknown due to lack of studies on the topic. The aim of the present study was to evaluate the mutagenicity of neonate Podocnemis expansa exposed to environmental concentrations (EC) of cyclophosphamide (Cyc). The adopted doses were EC-I 0.2 µg/L and EC-II 0.5 µg/L Cyc. These doses correspond to 1/10 and » of concentrations previously identified in hospital effluents. Turtles exposed to the CyC recorded larger total number of erythrocyte nuclear abnormalities than the ones in the control group after 48-h exposure. The total number of abnormalities for both groups (EC-I and EC-II) 96 h after the experiment had started was statistically similar to that of animals exposed to high Cyc concentration (positive control 5 × 104 µg/L). This outcome confirms the mutagenic potential of Cyc, even at low concentrations. On the other hand, when the animals were taken to a pollutant-free environment, their mutagenic damages disappeared after 240 h. After such period, their total of abnormalities matched the basal levels recorded for the control group. Therefore, our study is the first evidence of AD mutagenicity in reptiles, even at EC and short-term exposure, as well as of turtles' recovery capability after the exposure to Cyc.


Assuntos
Ciclofosfamida/toxicidade , Mutagênicos/toxicidade , Tartarugas , Poluentes Químicos da Água/toxicidade , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/toxicidade , Relação Dose-Resposta a Droga , Ecotoxicologia/métodos , Eritrócitos/efeitos dos fármacos , Eritrócitos/patologia , Testes para Micronúcleos , Mutagênicos/administração & dosagem , Esgotos/química , Poluentes Químicos da Água/administração & dosagem
17.
Drug Chem Toxicol ; 42(6): 608-614, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29681192

RESUMO

Artemisinin is a substance extracted from the Chinese plant Artemisia annua L. widely used in natural medicine for the treatment of various diseases. Artemether is a substance synthesized from artemisinin, and both drugs are commonly administered in the treatment of malaria. Although considered effective antimalarial drugs, very little is known about the genotoxic, cytotoxic and mutagenic effects of these drugs. Therefore, in the present study, we evaluated the genotoxic, mutagenic and cytotoxic effects of artemisinin (12.5, 25 and 50 µg/mL) and artemether (7.46; 14.92 and 29.84 µg/mL) in cultured human lymphocytes using the comet assay, the micronucleus test and the cytotoxicity assay for detection of necrosis and apoptosis by acridine orange/ethidium bromide staining. Our results showed a significant increase (p < 0.05) in the rate of DNA damage measured by comet assay and in the micronucleus frequency after treatment with both drugs. It was also observed that only artemisinin induced a statistically significant increase (p < 0.05) in the number of lymphocytes with death by necrosis 48 h after treatment. The results demonstrated that these two drugs induce mutagenic, genotoxic and cytotoxic effects in cultured human lymphocytes. Our data indicate the need for caution in the use of such drugs, since genotoxic/mutagenic effects may increase the risk of carcinogenesis.


Assuntos
Antimaláricos/toxicidade , Artemeter/toxicidade , Artemisininas/toxicidade , Linfócitos/efeitos dos fármacos , Adulto , Antimaláricos/administração & dosagem , Apoptose/efeitos dos fármacos , Artemeter/administração & dosagem , Artemisininas/administração & dosagem , Ensaio Cometa , Dano ao DNA/efeitos dos fármacos , Relação Dose-Resposta a Droga , Feminino , Humanos , Técnicas In Vitro , Linfócitos/patologia , Masculino , Testes para Micronúcleos , Testes de Mutagenicidade , Mutagênicos/administração & dosagem , Mutagênicos/toxicidade , Necrose/induzido quimicamente , Adulto Jovem
18.
Mutagenesis ; 33(5-6): 371-378, 2018 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-30590785

RESUMO

Ser139-phosphorylated H2AX (γH2AX) is a functional biomarker of DNA double-strand breaks. However, its conventional detection for in vivo samples relies on immunological methods using anti-γH2AX antibodies, making quantitative analysis difficult. Here, we established an absolute γH2AX quantification in vivo method for multiple organs in mice using liquid chromatography-triple quadrupole tandem mass spectrometry. When applying the method to male Institute of Cancer Research (ICR) mice (8 weeks old), the testes showed the highest γH2AX level (2.3% of total H2AX), followed by the bone marrow (0.51%), stomach (0.28%), kidney (0.20%), spleen (0.20%), liver (0.15%) and lung, which had the lowest overall level (0.10%). After intraperitoneal administration of 2 mg/kg mitomycin C in mice, γH2AX levels increased until 2-4 h, followed by a monotonical decrease to the control level in the bone marrow and spleen, and increased moderately until 24 h, followed by a slight decrease by 48 h in the liver, stomach, lung and kidney. After oral administration of 400 mg/kg ethyl methanesulphonate, γH2AX levels increased until 8 h and then decreased to the control level by 24-48 h in the spleen and kidney, increased until 24 h and then slightly decreased until 48 h in the bone marrow and lung, increased until 8 h and plateaued by 48 h in the liver, and decreased until 8 h and then increased to the control level in the stomach. Both the genotoxic chemicals did not alter γH2AX levels in the testes. These results indicate that our novel method could reveal variation in the γH2AX state in mouse organs and allows monitoring of the in vivo dynamics induced by genotoxic chemicals.


Assuntos
Metanossulfonato de Etila/administração & dosagem , Histonas/genética , Mitomicina/administração & dosagem , Animais , Medula Óssea/efeitos dos fármacos , Quebras de DNA de Cadeia Dupla , Dano ao DNA/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Rim , Masculino , Camundongos , Mutagênicos/administração & dosagem , Fosforilação/efeitos dos fármacos , Baço/efeitos dos fármacos , Testículo/efeitos dos fármacos , Testículo/metabolismo
19.
Sci Rep ; 8(1): 17038, 2018 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-30451877

RESUMO

Tyramine, histamine and putrescine are the most commonly detected and most abundant biogenic amines (BA) in food. The consumption of food with high concentrations of these BA is discouraged by the main food safety agencies, but legal limits have only been set for histamine. The present work reports a transcriptomic investigation of the oncogenic potential of the above-mentioned BA, as assessed in the HT29 human intestinal epithelial cell line. Tyramine had a greater effect on the expression of genes involved in tumorigenesis than did histamine or putrescine. Since some of the genes that showed altered expression in tyramine-exposed cells are involved in DNA damage and repair, the effect of this BA on the expression of other genes involved in the DNA damage response was investigated. The results suggest that tyramine might be genotoxic for intestinal cells at concentrations easily found in BA-rich food. Moreover, a role in promoting intestinal cancer cannot be excluded.


Assuntos
Dieta , Perfilação da Expressão Gênica , Mucosa Intestinal/efeitos dos fármacos , Mutagênicos/toxicidade , Tiramina/toxicidade , Dano ao DNA/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Relação Dose-Resposta a Droga , Células HT29 , Histamina/administração & dosagem , Histamina/toxicidade , Humanos , Mucosa Intestinal/citologia , Mutagênicos/administração & dosagem , Oncogenes , Putrescina/administração & dosagem , Putrescina/toxicidade , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes , Transdução de Sinais/efeitos dos fármacos , Tiramina/administração & dosagem
20.
Arch Toxicol ; 92(12): 3459-3469, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30259071

RESUMO

Cooking food at high temperatures produces genotoxic chemicals and there is concern about their impact on human health. DNA damage caused by individual chemicals has been investigated but few studies have examined the consequences of exposure to mixtures as found in food. The current study examined the mutagenic response to binary mixtures of benzo[a]pyrene (BaP) with glycidamide (GA), BaP with acrylamide (AC), or 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) with GA at human-relevant concentrations (sub-nM). The metabolically competent human MCL-5 cells were exposed to these chemicals individually or in mixtures and mutagenicity was assessed at the thymidine kinase (TK) locus. Mixture exposures gave dose-responses that differed from those for the individual chemicals; for the BaP-containing mixtures, an increased mutation frequency (MF) at low concentration combinations that were not mutagenic individually, and decreased MF at higher concentration combinations, compared to the calculated predicted additive MF of the individual chemicals. In contrast, the mixture of PhIP with GA did not increase MF above background levels. These data suggest BaP is driving the mutation response and that metabolic activation plays a role; in mixtures with BaP the increased/decreased MF above/below the expected additive MF the order is PhIP > AC > GA. The increase in MF at some low concentration combinations that include BaP is interesting and supports our previous work showing a similar response for BaP with PhIP, confirming this response is not limited to the BaP/PhIP combination. Moreover, the lack of a mutation response for PhIP with GA relative to the response of the individual chemicals at equivalent doses is interesting and may represent a potential avenue for reducing the risk of exposure to environmental carcinogens; specifically, removal of BaP from the mixture may reduce the mutation effect, although in the context of food this would be significantly challenging.


Assuntos
Acrilamida/toxicidade , Benzo(a)pireno/toxicidade , Compostos de Epóxi/toxicidade , Imidazóis/toxicidade , Acrilamida/administração & dosagem , Benzo(a)pireno/administração & dosagem , Carcinógenos/administração & dosagem , Carcinógenos/toxicidade , Carcinógenos Ambientais/administração & dosagem , Carcinógenos Ambientais/toxicidade , Linhagem Celular , Dano ao DNA/efeitos dos fármacos , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Compostos de Epóxi/administração & dosagem , Alimentos/toxicidade , Humanos , Imidazóis/administração & dosagem , Mutagênese/efeitos dos fármacos , Testes de Mutagenicidade , Mutagênicos/administração & dosagem , Mutagênicos/toxicidade , Mutação/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA